Skip to content
ATO Pathways
Log In
Overview
Search
Catalogs
SCAP
OSCAL
Catalogs
Profiles
Documents
References
Knowledge Base
Platform Documentation
Compliance Dictionary
Platform Changelog
About
Catalogs
XCCDF
Cisco NX OS Switch RTR Security Technical Implementation Guide
SRG-NET-000192-RTR-000002
SRG-NET-000192-RTR-000002
An XCCDF Group - A logical subset of the XCCDF Benchmark
Details
Profiles
Prose
SRG-NET-000192-RTR-000002
1 Rule
<GroupDescription></GroupDescription>
The Cisco PE switch must be configured to limit the number of MAC addresses it can learn for each Virtual Private LAN Services (VPLS) bridge domain.
Medium Severity
<VulnDiscussion>VPLS defines an architecture that delivers Ethernet multipoint services over an MPLS network. Customer Layer 2 frames are forwarded across the MPLS core via pseudowires using IEEE 802.1q Ethernet bridging principles. A pseudowire is a virtual bidirectional connection between two attachment circuits (virtual connections between PE and CE switches). A pseudowire contains two unidirectional label-switched paths (LSP). Each MAC forwarding table instance is interconnected using domain-specific LSPs, thereby maintaining privacy and logical separation between each VPLS domain. When a frame arrives on a bridge port (pseudowire or attachment circuit) and the source MAC address is unknown to the receiving PE switch, the source MAC address is associated with the pseudowire or attachment circuit and the forwarding table is updated accordingly. Frames are forwarded to the appropriate pseudowire or attachment circuit according to the forwarding table entry for the destination MAC address. Ethernet frames sent to broadcast and unknown destination addresses must be flooded out to all interfaces for the bridge domain; hence, a PE switch must replicate packets across both attachment circuits and pseudowires. A malicious attacker residing in a customer network could launch a source MAC address spoofing attack by flooding packets to a valid unicast destination, each with a different MAC source address. The PE switch receiving this traffic would try to learn every new MAC address and would quickly run out of space for the VFI forwarding table. Older, valid MAC addresses would be removed from the table, and traffic sent to them would have to be flooded until the storm threshold limit is reached. Hence, it is essential that a limit is established to control the number of MAC addresses that will be learned and recorded into the forwarding table for each bridge domain.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>