Skip to content
ATO Pathways
Log In
Overview
Search
Catalogs
SCAP
OSCAL
Catalogs
Profiles
Documents
References
Knowledge Base
Platform Documentation
Compliance Dictionary
Platform Changelog
About
Catalogs
XCCDF
Infoblox 8.x DNS Security Technical Implementation Guide
SRG-APP-000247-DNS-000036
SRG-APP-000247-DNS-000036
An XCCDF Group - A logical subset of the XCCDF Benchmark
Details
Profiles
Prose
SRG-APP-000247-DNS-000036
1 Rule
<GroupDescription></GroupDescription>
The Infoblox system must manage excess capacity, bandwidth, or other redundancy to limit the effects of information-flooding types of denial-of-service (DoS) attacks.
Medium Severity
<VulnDiscussion>A DoS is a condition when a resource is not available for legitimate users. When this occurs, the organization either cannot accomplish its mission or must operate at degraded capacity. In the case of application DoS attacks, care must be taken when designing the application to ensure the application makes the best use of system resources. SQL queries have the potential to consume large amounts of CPU cycles if they are not tuned for optimal performance. Web services containing complex calculations requiring large amounts of time to complete can bog down if too many requests for the service are encountered within a short period of time. A DoS attack against the DNS infrastructure has the potential to cause a DoS to all network users. As the DNS is a distributed backbone service of the internet, various forms of amplification attacks resulting in DoS, while using the DNS, are still prevalent on the internet today. Some potential DoS flooding attacks against the DNS include malformed packet flood, spoofed source addresses, and distributed DoS. Without the DNS, users and systems would not have the ability to perform simple name-to-IP resolution. Configuring the DNS implementation to defend against cache poisoning, employing increased capacity and bandwidth, building redundancy into the DNS architecture, using DNSSEC, and limiting and securing recursive services, DNS black holes, etc., may reduce the susceptibility to some flooding types of DoS attacks.</VulnDiscussion><FalsePositives></FalsePositives><FalseNegatives></FalseNegatives><Documentable>false</Documentable><Mitigations></Mitigations><SeverityOverrideGuidance></SeverityOverrideGuidance><PotentialImpacts></PotentialImpacts><ThirdPartyTools></ThirdPartyTools><MitigationControl></MitigationControl><Responsibility></Responsibility><IAControls></IAControls>